Copied to
clipboard

G = C42.414D4order 128 = 27

47th non-split extension by C42 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.414D4, C42.164C23, (C2×C4).18D8, C4.56(C2×D8), C4⋊Q8.22C4, (C2×C4).27SD16, C4.76(C2×SD16), C4.10D832C2, C4⋊C8.203C22, C42.105(C2×C4), (C22×C4).237D4, C4⋊Q8.237C22, C4.21(D4⋊C4), C4.6(C4.10D4), C4.104(C8.C22), C4⋊M4(2).14C2, (C2×C42).208C22, C22.27(D4⋊C4), C23.182(C22⋊C4), C42.12C4.24C2, C2.11(C23.38D4), (C2×C4⋊Q8).3C2, (C2×C4⋊C4).20C4, C4⋊C4.36(C2×C4), (C2×C4).1235(C2×D4), C2.15(C2×D4⋊C4), (C2×C4).158(C22×C4), (C22×C4).230(C2×C4), C2.17(C2×C4.10D4), (C2×C4).246(C22⋊C4), C22.222(C2×C22⋊C4), SmallGroup(128,278)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.414D4
C1C2C22C2×C4C42C2×C42C2×C4⋊Q8 — C42.414D4
C1C22C2×C4 — C42.414D4
C1C22C2×C42 — C42.414D4
C1C22C22C42 — C42.414D4

Generators and relations for C42.414D4
 G = < a,b,c,d | a4=b4=1, c4=a2b2, d2=b, ab=ba, cac-1=a-1, ad=da, cbc-1=b-1, bd=db, dcd-1=bc3 >

Subgroups: 236 in 120 conjugacy classes, 56 normal (26 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×Q8, C4×C8, C22⋊C8, C4⋊C8, C4⋊C8, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4⋊Q8, C4⋊Q8, C2×M4(2), C22×Q8, C4.10D8, C4⋊M4(2), C42.12C4, C2×C4⋊Q8, C42.414D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, D8, SD16, C22×C4, C2×D4, C4.10D4, D4⋊C4, C2×C22⋊C4, C2×D8, C2×SD16, C8.C22, C2×C4.10D4, C2×D4⋊C4, C23.38D4, C42.414D4

Smallest permutation representation of C42.414D4
On 64 points
Generators in S64
(1 11 22 63)(2 64 23 12)(3 13 24 57)(4 58 17 14)(5 15 18 59)(6 60 19 16)(7 9 20 61)(8 62 21 10)(25 51 42 33)(26 34 43 52)(27 53 44 35)(28 36 45 54)(29 55 46 37)(30 38 47 56)(31 49 48 39)(32 40 41 50)
(1 9 18 57)(2 58 19 10)(3 11 20 59)(4 60 21 12)(5 13 22 61)(6 62 23 14)(7 15 24 63)(8 64 17 16)(25 53 46 39)(26 40 47 54)(27 55 48 33)(28 34 41 56)(29 49 42 35)(30 36 43 50)(31 51 44 37)(32 38 45 52)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 48 9 33 18 27 57 55)(2 50 58 30 19 36 10 43)(3 46 11 39 20 25 59 53)(4 56 60 28 21 34 12 41)(5 44 13 37 22 31 61 51)(6 54 62 26 23 40 14 47)(7 42 15 35 24 29 63 49)(8 52 64 32 17 38 16 45)

G:=sub<Sym(64)| (1,11,22,63)(2,64,23,12)(3,13,24,57)(4,58,17,14)(5,15,18,59)(6,60,19,16)(7,9,20,61)(8,62,21,10)(25,51,42,33)(26,34,43,52)(27,53,44,35)(28,36,45,54)(29,55,46,37)(30,38,47,56)(31,49,48,39)(32,40,41,50), (1,9,18,57)(2,58,19,10)(3,11,20,59)(4,60,21,12)(5,13,22,61)(6,62,23,14)(7,15,24,63)(8,64,17,16)(25,53,46,39)(26,40,47,54)(27,55,48,33)(28,34,41,56)(29,49,42,35)(30,36,43,50)(31,51,44,37)(32,38,45,52), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,48,9,33,18,27,57,55)(2,50,58,30,19,36,10,43)(3,46,11,39,20,25,59,53)(4,56,60,28,21,34,12,41)(5,44,13,37,22,31,61,51)(6,54,62,26,23,40,14,47)(7,42,15,35,24,29,63,49)(8,52,64,32,17,38,16,45)>;

G:=Group( (1,11,22,63)(2,64,23,12)(3,13,24,57)(4,58,17,14)(5,15,18,59)(6,60,19,16)(7,9,20,61)(8,62,21,10)(25,51,42,33)(26,34,43,52)(27,53,44,35)(28,36,45,54)(29,55,46,37)(30,38,47,56)(31,49,48,39)(32,40,41,50), (1,9,18,57)(2,58,19,10)(3,11,20,59)(4,60,21,12)(5,13,22,61)(6,62,23,14)(7,15,24,63)(8,64,17,16)(25,53,46,39)(26,40,47,54)(27,55,48,33)(28,34,41,56)(29,49,42,35)(30,36,43,50)(31,51,44,37)(32,38,45,52), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,48,9,33,18,27,57,55)(2,50,58,30,19,36,10,43)(3,46,11,39,20,25,59,53)(4,56,60,28,21,34,12,41)(5,44,13,37,22,31,61,51)(6,54,62,26,23,40,14,47)(7,42,15,35,24,29,63,49)(8,52,64,32,17,38,16,45) );

G=PermutationGroup([[(1,11,22,63),(2,64,23,12),(3,13,24,57),(4,58,17,14),(5,15,18,59),(6,60,19,16),(7,9,20,61),(8,62,21,10),(25,51,42,33),(26,34,43,52),(27,53,44,35),(28,36,45,54),(29,55,46,37),(30,38,47,56),(31,49,48,39),(32,40,41,50)], [(1,9,18,57),(2,58,19,10),(3,11,20,59),(4,60,21,12),(5,13,22,61),(6,62,23,14),(7,15,24,63),(8,64,17,16),(25,53,46,39),(26,40,47,54),(27,55,48,33),(28,34,41,56),(29,49,42,35),(30,36,43,50),(31,51,44,37),(32,38,45,52)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,48,9,33,18,27,57,55),(2,50,58,30,19,36,10,43),(3,46,11,39,20,25,59,53),(4,56,60,28,21,34,12,41),(5,44,13,37,22,31,61,51),(6,54,62,26,23,40,14,47),(7,42,15,35,24,29,63,49),(8,52,64,32,17,38,16,45)]])

32 conjugacy classes

class 1 2A2B2C2D2E4A···4H4I4J4K4L4M4N8A···8H8I8J8K8L
order1222224···44444448···88888
size1111222···24488884···48888

32 irreducible representations

dim1111111222244
type++++++++--
imageC1C2C2C2C2C4C4D4D4D8SD16C4.10D4C8.C22
kernelC42.414D4C4.10D8C4⋊M4(2)C42.12C4C2×C4⋊Q8C2×C4⋊C4C4⋊Q8C42C22×C4C2×C4C2×C4C4C4
# reps1411144224422

Matrix representation of C42.414D4 in GL6(𝔽17)

0160000
100000
001000
000100
000010
000001
,
0160000
100000
0016200
0016100
001616162
0071161
,
5120000
12120000
0014111613
001613141
0016037
00811134
,
12120000
5120000
001211150
0047015
0011056
0013121310

G:=sub<GL(6,GF(17))| [0,1,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,16,16,16,7,0,0,2,1,16,1,0,0,0,0,16,16,0,0,0,0,2,1],[5,12,0,0,0,0,12,12,0,0,0,0,0,0,14,16,16,8,0,0,11,13,0,11,0,0,16,14,3,13,0,0,13,1,7,4],[12,5,0,0,0,0,12,12,0,0,0,0,0,0,12,4,1,13,0,0,11,7,10,12,0,0,15,0,5,13,0,0,0,15,6,10] >;

C42.414D4 in GAP, Magma, Sage, TeX

C_4^2._{414}D_4
% in TeX

G:=Group("C4^2.414D4");
// GroupNames label

G:=SmallGroup(128,278);
// by ID

G=gap.SmallGroup(128,278);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,232,758,1123,1018,248,1971,242]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=a^2*b^2,d^2=b,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=b*c^3>;
// generators/relations

׿
×
𝔽